Search results for "effective Hamiltonian"
showing 5 items of 5 documents
Extension of the MIRS computer package for the modeling of molecular spectra : from effective to full ab initio ro-vibrational hamiltonians in irredu…
2012
The MIRS software for the modeling of ro-vibrational spectra of polyatomic molecules was considerably extended and improved. The original version (Nikitin, et al. JQSRT, 2003, pp. 239--249) was especially designed for separate or simultaneous treatments of complex band systems of polyatomic molecules. It was set up in the frame of effective polyad models by using algorithms based on advanced group theory algebra to take full account of symmetry properties. It has been successfully used for predictions and data fitting (positions and intensities) of numerous spectra of symmetric and spherical top molecules within the vibration extrapolation scheme. The new version offers more advanced possib…
Effective Hamiltonians in Nonrelativistic Quantum Electrodynamics
2021
In this paper, we consider some second-order effective Hamiltonians describing the interaction of the quantum electromagnetic field with atoms or molecules in the nonrelativistic limit. Our procedure is valid only for off-energy-shell processes, specifically virtual processes such as those relevant for ground-state energy shifts and dispersion van der Waals and Casimir-Polder interactions, while on-energy-shell processes are excluded. These effective Hamiltonians allow for a considerable simplification of the calculation of radiative energy shifts, dispersion, and Casimir-Polder interactions, including in the presence of boundary conditions. They can also provide clear physical insights int…
Evanescent wave approximation for non-Hermitian Hamiltonians
2020
The counterpart of the rotating wave approximation for non-Hermitian Hamiltonians is considered, which allows for the derivation of a suitable effective Hamiltonian for systems with some states undergoing decay. In the limit of very high decay rates, on the basis of this effective description we can predict the occurrence of a quantum Zeno dynamics, which is interpreted as the removal of some coupling terms and the vanishing of an operatorial pseudo-Lamb shift.
High-resolution FTIR spectra analysis of sulfur dioxide isotopologues
2019
In this thesis we considered the spectral properties of the sulfur dioxide. The experimental FTIR spectra of numerous sulfur dioxide isotopologues, 32S16O2, 34S16O2, 32S18O2 and 32S16O18O, were first recorded in the regions of fundamental, «hot», combination and overtone bands. The wide variability of the experimental conditions gave possibility to observe and identify for the first time transitions be¬ longing to the following of ro-vibrational bands: 3v2, 3v2 - v2, 2v2 - v2 bands of 32S16O2; 2v2 - v2 band of 34S16O2; v1 + v2, v2 + v3, v1 + v3, 2v1, 2v3 bands of 32S18O2; v1, v3, 2v1, v1 + v3, 2v3 bands of 32S16O18O. The inverse spectroscopic problems were solved for the studied states with…
Effective hamiltonian approach to the non-Markovian dynamics in a spin-bath
2010
We investigate the dynamics of a central spin that is coupled to a bath of spins through a non-uniform distribution of coupling constants. Simple analytical arguments based on master equation techniques as well as numerical simulations of the full von Neumann equation of the total system show that the short-time damping and decoherence behaviour of the central spin can be modelled accurately through an effective Hamiltonian involving a single effective coupling constant. The reduced short-time dynamics of the central spin is thus reproduced by an analytically solvable effective Hamiltonian model.